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An Effective Via-Based Frequency Adjustment and Minimization 

Methodology for Single-Layered Frequency-Selective Surfaces                                             

from Electromagnetics Group 

 

 
INTRODUCTION 
Frequency Selective Surfaces 
(FSSs) are microwave 
components formed by repetitive 
arrangement of unit cells, such as 
periodic arrays of a patch, 
dipole, loop, or one of their 
complementary structures. By 
properly designing the structures 
of unit cells, the FSSs can be 
controlled as spatial filters that 
perform selectively with respect 
to incident electromagnetic 
waves of different frequencies, as 
indicated in Fig. 1. FSSs are used 
for a wide variety of applications 
including antenna radomes, 
electromagnetic shielding, and 
absorbers. 
Typically during the designing 
and analyzing steps of FSSs, the 
periodic arrays are in infinite 
arrangement. Nevertheless, this 
requirement can no longer be 
fulfilled in practical applications 
so designing miniaturized 
elements, which increases the 

number of unit cell in a fixed area, 
is of great importance. In contrast 
to the previous solutions, the 
proposed methodology suggests 
adding well-designed vias to a 
single-layered FSS for its further 
element minimization and 
frequency tuning. This via-based 
methodology has two major 
advantages. First, designers can 
easily adjust the resonant 
frequency of an FSS to meet 
design specifications without 
having to redesign the original 
element pattern. Second, no any 
bulk component is required in the 
proposed methodology. 
 

Miniaturization Methodology 
The frequency responses of most 
FSSs can be modeled as a series or 
a parallel LC equivalent circuit. 
Therefore, the resonant frequency 
is determined using the formula 
1/(2𝜋√𝐿𝐶) , where L and C 
represent the equivalent 
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Message from the Director 
 

 

Hsuan-Jung Su 

 

Professor & GICE Director 

Congratulations to Prof. Hung-yi Lee for receiving 

the “2018 Excellent Young Engineering Award” 

from the Chinese institute of Electrical 

Engineering (CIEE), and Prof. Liang-Hung Lu for 

receiving the Micron Teacher Award! They well 

deserve these highly competitive awards. We 

would also like to congratulate Prof. Yu-Chiang 

Frank Wang’s Vision & Learning Lab for winning 

the 2nd Prize at the International Conference on 

Computer Vision and Pattern Recognition (CVPR) 

Workshop. Well done! 

 

In this issue, we invite Prof. Tzong-Lin Wu to share 

his research results on Frequency Selective 

Surface (FSS) and Prof. Yu-Chiang Frank Wang to 

share the results on a deep learning framework of 

Cross-Domain Representation Disentangler 

(CDRD). Please grab a coffee or tea and enjoy 

reading their research works. 

capacitance and inductance. Conceptually, 
a miniaturized-element FSS can be created 
by directly increasing either the equivalent 
capacitance or inductance to lower its 
resonant frequency while maintaining a fixed 
element size. Line meandering is frequently 
adopted for increasing the inductance. 
End loading in the Jerusalem Cross (JC) is 
widely used for enlarging the capacitance. 
Although the discussed reactance-enhancing 
approaches are widely used for designing 
miniaturized-element FSSs, the two-
dimensional planar structures (indicated as 
the horizontal X–Y plane here) restrict the 
enhancement. This study proposes that 
another dimension (the vertical Z-direction) 
can be considered as well to further enhance 
the miniaturization. 
 Adding vertical vias into a planar FSS 
element can be an effective methodology 
for increasing the equivalent capacitance 
and inductance. All vias possess their own 
inductance, which is determined by their 
diameter and length. A high mutual 
capacitance may result from two proximal 
and parallel vias at the neighboring elements. 
Such capacitance depends on the via length 
and the distance between vias. Furthermore, 
the inductance and capacitance can be 

controlled by the number and arrangement 
of vias in an element. The geometry of vias is 
simple. Hence, both the inductance and 
capacitance can be calculated through 
closed-form equations based on previous 
research results. 
 To demonstrate the performance of the 
proposed methodology, the classic JC FSS is 
considered as an example. As shown in Fig. 
2(a) and (b), the element comprises a single 
metallic layer on a thin substrate, and 
combined with 8 and 24 vias, respectively. 
These two numbers of vias are used to 
represent two extreme cases, in which the 
vias are sparsely and densely distributed. The 
JC FSS with vias can be easily fabricated 
using a single-layered printed circuit board 
(PCB), with a dielectric constant 4.4 and loss 
tangent 0.02. 
 

 
 

Fig 1. Illustration of the concept of FSS as a spatial filter. 

 

 
 

Fig 2. (a) Geometry of the JC element with 8 vias. (b) 

Geometry of the JC element with 24 vias. 
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Simulation Result and Experimental Validation 

Utilizing full-wave simulators, Fig. 3 shows the 

minimization performance resulting from via 

additions. Compared with the original JC FSS 

without vias, the resonant frequency is 

considerably shifted from 18.66 to 6.52 GHz 

and 5.60 GHz for the FSS with 8 and 24 vias in 

each element, respectively. Especially for the 

case of 24 vias, the size of the element is only 

0.062λ0× 0.062 λ0, demonstrating a remarkable 

minimization, where λ0 represents the 

wavelength in free space at the resonant 

frequency. Furthermore, the high frequency 

difference between the JC FSS without and 

with vias indicates that a wide frequency 

range for tuning could be established by 

properly adding the vias. 

 

 
 

Fig. 3. Transmittance of the original JC FSS, JC FSS with 8 vias, and 

JC FSS with 24 vias. 

 

To demonstrate again the validity of the 

proposed equivalent circuit model, a 

prototype of the JC FSS with eight vias at every 

element was fabricated and examined in a 

fully anechoic chamber. As shown in Fig. 4, the 

measurement setup comprises two high gain 

antennas and an Agilent 8722ES vector 

network analyzer (VNA). The FSS prototype or 

the devices under test (DUT) were fabricated 

using a single-layered FR-4 substrate and PCB 

technology. The FSS prototype is 660mm × 

660mm in size and includes 200 × 200 elements.  

 In an attempt to calibrate the VNA used 

in measuring the transmittance (S21), a 

measurement must be performed initially in the 

absence of the DUT. Fig. 5 shows the FSS 

transmittance for normal incidence. Obviously, 

the measured results are consistent with those 

obtained using the full-wave simulation. 

 

 
(a) 

 
(b) 

 
Fig. 4. (a) Setup of measurement. (b) Photo of the fabricated 

FSS prototype. 

 

 
 

Fig. 5. Comparison between the measurement and the full-

wave simulation. 
Conclusion 

This research proposes an effective via-

based methodology for element 

minimization and frequency tuning of a 

single-layered FSS. This methodology suggests 

using additional vertical vias in FSS designs. 

Designers can easily create a via-based FSS 

with a wide operating frequency tuning 

range by implanting different numbers of vias 

with different lengths into a published FSS 

element. These desirable characteristics 

greatly broaden the applicability of FSS.  
 
For more information please contact:  

Advisor:  Professor Tzong-Lin Wu 

Email: tlwu@ntu.edu.tw 
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Decomposing Deep Neural Networks for Visual Analysis – Learning Interpretable 

Disentangled Representation for Visual Classification and Manipulation* 

from Data Science and Smart Networking  Group 

INTRODUCTION 
The development of deep neural networks benefits 

a variety of areas such as computer vision, machine 

learning, and natural language processing, which 

results in promising progresses in realizing artificial 

intelligence environments. However, it is 

fundamental and desirable for understanding the 

observed information around us. To be more 

precise, the above goal is achieved by identifying 

and disentangling the underlying explanatory 

factors hidden in the observed data and the 

derived learning models. Therefore, the challenge 

of representation learning is to have the learned 

latent element explanatory and disentangled from 

the derived abstract representation. 

With the goal of discovering the underlying factors 

of data representation associated with particular 

attributes of interest, representation 

disentanglement is the learning task which aims at 

deriving a latent feature space that decomposes 

the derived representation so that the 

aforementioned attributes (e.g., face identity/pose, 

image style, etc.) can be identified and described. 

Several works have been proposed to tackle this 

task in unsupervised, semi-supervised, or fully 

supervised settings. Once attribute of interest 

properly disentangled, one can produce the output 

images with particular attribute accordingly. 

However, like most machine learning algorithms, 

representation disentanglement is not able to 

achieve satisfactory performances if the data to be 

described/manipulated are very different from the 

training ones. This is known as the problem of 

domain shift (or domain/dataset bias), and requires 

the advance of transfer learning or domain 

adaptation techniques to address this challenging 

yet practical problem. Similarly, learning of deep 

neural networks for interpretable and disentangled 

representation generally requires a large number of 

annotated data, and also suffers from the above 

problem of domain shift. 

We propose a novel deep neural networks 

architecture based on generative adversarial 

networks (GAN) [1]. As depicted in Figure 1, our 

proposed network observes cross-domain data with 

partial supervision, and performs representation 

learning and disentanglement in the resulting 

shared latent space. It is worth noting that, this can 

be viewed as a novel learning task of joint 

representation disentanglement and domain 

adaptation in an unsupervised setting, since only 

unlabeled data is available in the target domain 

during the training stage. Later in the experiments, 

we will further show that the derived feature 

representation can be applied to describe data 

from both source and target domains, and 

classification of target-domain data can be 

achieved with very promising performances. 

 

 
Fig.1 : Illustration of cross-domain representation 

disentanglement. With attributes observed only in the source 

domain, we are able to disentangle, adapt, and manipulate 

the data across domains with particular attributes of interest. 

 

Cross-Domain Representation Disentangler 

(CDRD) 
Since both AC-GAN [2] and InfoGAN [3] are known 

to learn interpretable feature representation using 

deep neural networks (in supervised and 

unsupervised settings, respectively), it is necessary 

to briefly review their architecture before 

introducing ours. Based on the recent success of 

GAN [1], both AC-GAN and InfoGAN take noise 

and additional class/condition as the inputs to the 

generator, while the label prediction is additionally 

performed at the discriminator for the purpose of 

learning disentangled features. As noted above, 

since both AC-GAN and InfoGAN are not designed 

to learn/disentangle representation for data across 

different domains, they cannot be directly apply for 

cross-domain representation disentanglement. 

To address this problem, we propose a novel 

network architecture of cross-domain 

representation disentangler (CDRD). As depicted in 

Figure 2, our CDRD model consists of two major 

components: Generators {G_S,G_T,G_S}, and 

Discriminators  

{D_S,D_T,D_C}. Similar to AC-GAN and InfoGAN, we 

have an auxiliary classifier attached at the end of 

the network, which shares all the convolutional 
layers with the discriminator D_C, followed by a fully 

connected layer to predict the label/attribute 

outputs. Thus, we regard our discriminator as a 

multi-task learning model, which not only 

distinguishes between synthesized and real images 
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but also recognizes the associated image attributes. 

 

Fig.2 The network architecture of Cross-Domain Representation 

Disentangler (CDRD). Note that while source and target domain 

data are presented during training, only attribute supervision is 

available in the source domain, and no cross-domain data pair is 

needed. 

 
To handle cross-domain data with only supervision 

from the source domain, we choose to share weights 

in higher layers in G and D, aiming at bridging the gap 

between high/coarse-level representations of cross-

domain data. To be more precise, we split G and D in 

CDRD into multiple sub-networks specialized for 

describing data in the source domain {GS, DS}, target 

domain { GT, DT }, and the common latent space 

{GC, DC} (see the green, yellow, and red-shaded colors 

in Figure 2, respectively). 

Let  IS  be the ground truth label in source domain. 

Following the challenging setting of unsupervised 

domain adaptation, each input image  XS  in the 

source domain is associated with a ground truth label 

IS , while unsupervised learning is performed in the 

target domain. Thus, the common latent 

representation z in the input of CDRD together with a 

randomly assigned attribute I would be the inputs for 

the generator. For the synthesized images 𝑋̃𝑆 and 𝑋̃𝑇, 

we have: 

 

𝑋̃𝑆 ~ GS (GC(z, 𝐼)) , 𝑋̃𝑇 ~ GT (GC(z, 𝐼)) . (1) 

The objective functions for adversarial learning in 

source and target domain are now defined as 

follows: 

ℒ𝑎𝑑𝑣
𝑆 = 𝔼 [log (DC(DS(XS)))] + 𝔼 [log (1 − DC (DS((𝑋̃S)))]  

ℒ𝑎𝑑𝑣
𝑇 = 𝔼 [log (DC(DT(XT)))] + 𝔼 [log (1 − DC (DT((𝑋̃T)))]  

ℒ𝑎𝑑𝑣 =  ℒ𝑎𝑑𝑣
𝑆 + ℒ𝑎𝑑𝑣

𝑇 . (2) 

 
Let  P(I|X)  be a probability distribution over 

labels/attributes I calculated by the discriminator in 

CDRD. The objective functions for cross-domain 

representation disentanglement are defined 

below: 

ℒ𝑑𝑖𝑠
𝑆 = 𝔼[log P(I = 𝐼|𝑋̃S)] + 𝔼[log P(I = 𝐼𝑆|XS)]  

ℒ𝑑𝑖𝑠
𝑇 = 𝔼[log P(I = 𝐼|𝑋̃T)]  

ℒ𝑑𝑖𝑠 =  ℒ𝑑𝑖𝑠
𝑆 + ℒ𝑑𝑖𝑠

𝑇 . (3) 

With the above loss terms determined, we learn 

our CDRD by alternatively updating Generator 

and Discriminator with the following gradients: 

𝜃𝐺

+
← −Δ𝜃𝐺

(−ℒ𝑎𝑑𝑣 + λ ℒ𝑑𝑖𝑠)  

𝜃𝐷

+
← −Δ𝜃𝐷

(ℒ𝑎𝑑𝑣 + λ ℒ𝑑𝑖𝑠). (4) 

We note that the hyperparameter  λ is used to 

control the disentanglement ability. We will show 

its effect on the resulting performances in the 

experiments. 

 

Similar to the concept in InfoGAN, the auxiliary 

classifier in  DC  is to maximize the mutual 

information between the assigned label 𝐼  and 

the synthesized images in the source and target 

domains (i.e.,  GS (GC(z, 𝐼)) and  GT (GC(z, 𝐼))). With 

network weights in high-level layers shared 

between source and target domains in both 

G and  D , the disentanglement ability is 

introduced to the target domain by updating 

the parameters in  GT  according to ℒ𝑎𝑑𝑣
𝑇  during 

the training process. 

 

Results: Cross-Domain Representation 

Disentanglement and Translation 
We apply our CDRD to perform cross-domain 

representation disentanglement, in which a 

single source domain and multiple target 

domains are of use. From the results shown in 

Figures 3 and 4, we see that our CDRD can be 

successfully applied for this challenging task 

even with only attribute supervision from the 

single source-domain data. This confirms our 

design of high-level sharing weights in CDRD. 

 
Fig.3. Cross-domain conditional image synthesis from a single 

source to multiple target domains: MNIST to USPS and 

Semeion with labels as digits. 

Technology (Continued from page 4) 

  (Continued on page 6) 
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Technology  (Continued from page 5) 

 

The 2018 2nd Semiannual Report of Taiwan Electromagnetic Industry-Academia Consortium: 

5G Antenna and RF Frontend Key Technical Challenges and Trends Symposium 
 

 
Fig. 4. Cross-domain conditional image translation for facial 

images (sketch to photo) with labels as glasses. 

 

Results: Unsupervised Domain Adaptation 
For UDA with digit images, we consider MNIST to USPS 

and USPS to MNIST, and we evaluate the 

classification accuracy for target-domain images. 

Table 1 lists and compares the performances of 

recent UDA methods. We can see that a significant 

improvement was achieved by our CDRD. It is worth 

noting that, while UNIT reported 0.9597 for M to U and 

0.9358 for U to M, UPDAG achieved 0.9590 for M to U, 

they considered much larger datasets (UNIT required 

60000/7291 images for MNIST/USPS, and UPDAG 

required 50000/6562 for MNIST/USPS).  

 

Table 1 UDA accuracy (%) for recognizing target-

domain images with the attribute of digits (0-9). Take 

M to U as example, we set MNIST and USPS as source 

and target domains, respectively. 

 
 

Conclusions 
We presented a deep learning framework of Cross-

Domain Representation Disentangler (CDRD). Our 

model is able to perform joint representation 

disentanglement and adaption of cross-domain 

images, while only attribute supervision is available 

in the source domain. We successfully verified that 

our models can be applied to conditional cross-

domain image synthesis, translation, and the task 

of unsupervised domain adaptation. 
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Computer Vision and Pattern Recognition (CVPR 

2018) 

For more information please contact:  

Advisor:  Professor Yu-Chiang Frank Wang 

Email: ycwang@ntu.edu.tw 

Activity   

 

The fifth-generation(5G) mobile communication 

system, since 3GPP released the first international 

5G standard on June 13, 2018, many countries 

are dedicated to the development of related 

technologies and commercial applications. The 

5G blueprint proposed by the ITU is: eMBB 

(enhanced Mobile Broadband), URLLC (Ultra 

Reliable Low Latency Communications), mMTC 

(massive Machine Type Communications). In 

Taiwan, we expect to be a leader in 5G industries, 

but we have to face many challenges. This time, 

many active researchers and engineers were 

gathered in the 2018 5G antenna and RF front-

end key technical challenges and trends 

symposium on 5th of October, 2018 at the Barry 

Lam Hall, National Taiwan University (NTU) in Taipei, 

Taiwan to discuss the challenges currently we face 

and the possible future directions. The symposium 

was organized by Taiwan Electromagnetic Industry-

Academia Consortium, and co-organized by the 

Department of Electronic and Computer 

Engineering, NTUST, the Department of Electrical 

Engineering, NTU, Graduate Institute of 

Communication Engineering, NTU, 5G Industrial 

Technology Consortium, Wireless Communication 

and Electromagnetic Compatibility Research 

Center, NTUST, Industry Liaison Office, NTU, High-

Speed RF and mm-Wave Technology Center, NTU 

Department of Electrical Engineering, and IEEE 

Council of EMC Taipei Chapter. 

  (Continued on page 7) 
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Activity (Continued from page 6) 

 

   

In this event, the organizers invited Professor Hsi-Tseng 

Chou, Professor Hsuan-Jung Su and Professor Tzong-

Lin Wu from National Taiwan University, Professor J.H. 

Tarng from National Ciao Tung University, Fu Yi-Kang, 

Manager of MediaTek, Zhou Rui-Hong, Technical 

Director of Auden Technology to share their research 

and experience for the 5G antenna and RF front-end 

techniques. They discussed these issues on views of 

systems, circuits and industry. The topics include 

millimeter wave antenna design, engineering 

challenges, measurement requirements and 

practical applications. It is really exciting. 

 

 
Professor Tzong-Lin Wu, NTU 

 
Dr. Yi-Kang Fu, MTK 

Professor Ruey-Beei Wu from National Taiwan 

University shared two news related to 5G with us: First, 

the Executive Yuan will complete the first phase of 

the 5G spectrum market in 2020 in Taiwan. What did 

we gain from Taiwan’s telecom industry since the 

development of 4G in 2013? The second is that 

Morris Chang proposed an issue at APEC. In the era 

of digital economy in the world, what role does 

Taiwan play? The era of 5G has arrived, and many 

technologies have developed in various ways, which 

can roughly conclude five important applications: 

three high and two low, respectively high capacity: 

High amounts of connected devices, high spectrum 

efficiency, low latency and low power consumption. 

The following topics include development and 

application of Massive MIMO and Smart Antenna 

Technology, 5G communication technology of 

industry 4.0, 5G system design to commercialization, 

Technology and Challenge of 5G Millimeter Wave 

Antenna Module, Technology Development and 

Application of Millimeter Wave Phase Array, 

Application of millimeter wave RF front-end 

circuit and shielding technology in 5G 

communication. They follow the specification 

of 5G, trying to develop their application in the 

future. Our goal is that through the exchange 

of 5G development trends, discussing about 

current situation and future prospects, Taiwan 

can be well-developed for the next 

generation. The technology of millimeter-wave 

design now appears to be everywhere in our 

daily life. 

 

 
Professor Ruey-Beei Wu, NTU 

 
Professor Hsi-Tseng Chou, NTU 
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Corner of student news 

The International Conference on Computer Vision and 

Pattern Recognition (CVPR) is known as the flagship and 

top-tier international conference on computer vision and 

machine learning for researchers in the above fields. This 

year, CVPR is held at Salt Lake City, Utah, USA (June 18-22, 

2018). With more than 3,300 submissions to the main 

conference, only 979 papers are accepted with a 29% 

acceptance rate. Moreover, the total number of 

registration is 6,128. Not only people from academia, a 

very large number of participants come from industries. 

This again shows and explains why CVPR is recognized as 

the major event to share the latest research outputs with 

high impacts, and to identify high-quality researchers and 

engineers in these research areas.  

 

Under the supervision of Prof. Yu-Chiang Frank Wang, 

Vision and Learning Lab of the Graduate Institute of 

Communication Engineering from National Taiwan 

University has two papers accepted for the main 

conference. The titles of the two papers are “Detach and 

Adapt: Learning Cross-Domain Disentangled Deep 

Representation” and “Multi-Label Zero-Shot Learning with 

Structured Knowledge Graphs” (poster presentation”, 

respectively. The former addresses the challenging task of 

representation disentanglement, which decomposes the 

deep learning models and derives interpretable feature 

representation, with the goal of explaining the remarkable 

capability of the deep neural networks in perform image 

classification and synthesis tasks. This work is accepted as 

spotlight presentation, and the co-authors of this papers 

(both are members of GICE) deliver excellent talks to the 

audience. As for the latter work, we address the practical 

challenge of multi-label zero-shot image classification. By 

utilizing visual and semantics information, this work can be 

successfully applied to predict multiple seen and unseen 

labels from a single input image, which would be very 

beneficial for visual analysis tasks. 

 

In addition to the main conference, our lab members also 

attend two challenges. One is Visual Understanding of 

Humans in Crowd Scene and Look Into Person Challenge, 

and the other is DeepGlobe: A Challenge for Parsing the 

Earth through Satellite Images. With both works accepted 

at this workshop, our team is awarded the 2nd Prize for the 

challenge of DeepGlobe, beating outstanding teams like 

MIT and University of Maryland. 

 

Finally, with an increasing number of participants, our lab 

members also hold the event of CVPR Taiwan Night (with 

the support by the AI office of the Ministry of Science and 

Technology). About 100 Taiwanese researchers, students, 

and engineers who either are based in Taiwan or overseas 

attend this social event, exchanging their statuses and 

recent progresses with each other. This great event not 

only brings all Taiwanese in the above fields together, it 

also promotes our visibility and connects the networks of 

Taiwanese AI community. 

 
Member of Vision & Learning Lab winning the 2nd Prize at 

the CVPR Workshop DeepGlobe Challenge, under the 

supervision of Prof. Yu-Chiang Frank Wang (second from 

the right). 

 

 
Vision and Learning Lab member Yu-Ying Yeh and Yen-

Cheng Liu perform spotlight presentation at CVPR main 

conference during the oral session. 

Vision & Learning Lab winning the 2nd Prize at the CVPR Workshop 


